numpy.square() in Python – Tutorial

Python numpy.square() function returns a new array with the element value as the square of the source array elements. The source array remains unchanged.

Python numpy.square() Examples

It’s a utility function to quickly get the square of the matrix elements. Let’s look at the examples of numpy square() function with integer, float, and complex type array elements.

1. numpy.square() int array

import numpy as np

# ints
array_2d = np.array([[1, 2, 3], [4, 5, 6]])

print(f'Source Array:\n{array_2d}')

array_2d_square = np.square(array_2d)

print(f'Squared Array:\n{array_2d_square}')

Output:

Source Array:
[[1 2 3]
 [4 5 6]]
Squared Array:
[[ 1  4  9]
 [16 25 36]]

2. numpy square() floating point array

import numpy as np

array_2d_float = np.array([1.2, 2.3, 5])

print(f'Source Array:\n{array_2d_float}')

array_2d_float_square = np.square(array_2d_float)

print(f'Squared Array:\n{array_2d_float_square}')

Output:

Source Array:
[1.2 2.3 5. ]
Squared Array:
[ 1.44  5.29 25.  ]

Notice that the integer in the floating-point array has been converted to a floating-point number.

3. numpy.square() complex numbers array

arr = np.array([1 + 2j, 2 + 3j, 4])

print(f'Source Array:\n{arr}')

arr_square = np.square(arr)

print(f'Squared Array:\n{arr_square}')

Output:

Source Array:
[1.+2.j 2.+3.j 4.+0.j]
Squared Array:
[-3. +4.j -5.+12.j 16. +0.j]

Create a Free Account

Register now and get access to our Cloud Services.

Posts you might be interested in:

centron Managed Cloud Hosting in Deutschland

Dimension Reduction – IsoMap

Python
Dimension Reduction – IsoMap Content1 Introduction2 Prerequisites for Dimension Reduction3 Why Geodesic Distances Are Better for Dimension Reduction4 Dimension Reduction: Steps of the IsoMap Algorithm5 Landmark Isomap6 Drawbacks of Isomap7…
centron Managed Cloud Hosting in Deutschland

What Every ML/AI Developer Should Know About ONNX

Python
What Every ML/AI Developer Should Know About ONNX Content1 Introduction2 ONNX Overview3 Prerequisites for ML/AI Developer4 ONNX in Practice for ML/AI Developer5 Conclusion for What Every ML/AI Developer Should Know…