numpy.cumsum() in Python – Tutorial

Python numpy cumsum() function returns the cumulative sum of the elements along the given axis.

Python numpy.cumsum() syntax

The cumsum() method syntax is:

cumsum(array, axis=None, dtype=None, out=None)

The array can be ndarray or array-like objects such as nested lists.
The axis parameter defines the axis along which the cumulative sum is calculated. If the axis is not provided then the array is flattened and the cumulative sum is calculated for the result array.
The dtype parameter defines the output data type, such as float and int.
The out optional parameter is used to specify the array for the result.

Python numpy.cumsum() Examples

Let’s look at some examples of calculating cumulative sum of numpy array elements.

1. Cumulative Sum of Numpy Array Elements without axis

import numpy as np

array1 = np.array(
    [[1, 2],
     [3, 4],
     [5, 6]])

total = np.cumsum(array1)
print(f'Cumulative Sum of all the elements is {total}')

Output: Cumulative Sum of all the elements is [ 1 3 6 10 15 21]

Here, the array is first flattened to [ 1 2 3 4 5 6]. Then the cumulative sum is calculated, resulting in [ 1 3 6 10 15 21].

2. Cumulative Sum along the axis

import numpy as np

array1 = np.array(
    [[1, 2],
     [3, 4],
     [5, 6]])

total_0_axis = np.cumsum(array1, axis=0)
print(f'Cumulative Sum of elements at 0-axis is:\n{total_0_axis}')

total_1_axis = np.cumsum(array1, axis=1)
print(f'Cumulative Sum of elements at 1-axis is:\n{total_1_axis}')

Output:

 [[ 1  2]
     [ 4  6]
     [ 9 12]]
    Cumulative Sum of elements at 1-axis is:
    [[ 1  3]
     [ 3  7]
     [ 5 11]]

Cumulative Sum of elements at 0-axis is:

3. Specifying data type for the cumulative sum array

import numpy as np

array1 = np.array(
    [[1, 2],
     [3, 4],
     [5, 6]])

total_1_axis = np.cumsum(array1, axis=1, dtype=float)
print(f'Cumulative Sum of elements at 1-axis is:\n{total_1_axis}')

Output:

Cumulative Sum of elements at 1-axis is:
    [[ 1.  3.]
     [ 3.  7.]
     [ 5. 11.]]

Create a Free Account

Register now and get access to our Cloud Services.

Posts you might be interested in:

centron Managed Cloud Hosting in Deutschland

Dimension Reduction – IsoMap

Python
Dimension Reduction – IsoMap Content1 Introduction2 Prerequisites for Dimension Reduction3 Why Geodesic Distances Are Better for Dimension Reduction4 Dimension Reduction: Steps of the IsoMap Algorithm5 Landmark Isomap6 Drawbacks of Isomap7…
centron Managed Cloud Hosting in Deutschland

What Every ML/AI Developer Should Know About ONNX

Python
What Every ML/AI Developer Should Know About ONNX Content1 Introduction2 ONNX Overview3 Prerequisites for ML/AI Developer4 ONNX in Practice for ML/AI Developer5 Conclusion for What Every ML/AI Developer Should Know…