Python numpy.append() Function – Easy Array Concatenation

The Python numpy.append() function allows for array concatenation and is especially useful when processing data efficiently. It returns a new array while keeping the original array unchanged. This tutorial explains how to use the function and avoid common errors.

Syntax of numpy.append() Function

numpy.append(arr, values, axis=None)

Parameters:

  1. arr: The source array (NumPy array or array-like object).
  2. values: The values to be appended (array-like object).
  3. axis: The axis along which the values should be appended:
    • None (default): Arrays are flattened and concatenated.
    • 0: Along the first dimension (rows).
    • 1: Along the second dimension (columns).

Return Value:

A new array with the appended values.

Examples of Using numpy.append()

1. Flattening and Concatenating Arrays

import numpy as np

arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[10, 20], [30, 40]])

# Arrays werden abgeflacht und zusammengeführt
arr_flat = np.append(arr1, arr2)
print(“Abgeflachtes Array:”, arr_flat)


Output:

Abgeflachtes Array: [ 1 2 3 4 10 20 30 40]

2. Concatenating Along an Axis

import numpy as np

# Zusammenführen entlang der Achse 0 (Zeilen)
arr_axis0 = np.append([[1, 2], [3, 4]], [[10, 20], [30, 40]], axis=0)
print(“Zusammengeführt entlang Achse 0:\n”, arr_axis0)

# Zusammenführen entlang der Achse 1 (Spalten)
arr_axis1 = np.append([[1, 2], [3, 4]], [[10, 20], [30, 40]], axis=1)
print(“Zusammengeführt entlang Achse 1:\n”, arr_axis1)


Output:

Zusammengeführt entlang Achse 0:
[[ 1 2]
[ 3 4]
[10 20]
[30 40]]

Zusammengeführt entlang Achse 1:
[[ 1 2 10 20]
[ 3 4 30 40]]


3. Concatenating Arrays of Different Shapes

The numpy.append() function works as long as the array dimensions are compatible. If arrays are flattened, they can be concatenated even if their shapes differ.

import numpy as np

# Abflachen und Zusammenführen
arr_flat = np.append([[1, 2]], [[1, 2, 3], [4, 5, 6]])
print(“Zusammenführung von Arrays unterschiedlicher Form:\n”, arr_flat)

# Zusammenführung entlang der Achse 0
arr_axis0 = np.append([[1, 2]], [[3, 4], [5, 6]], axis=0)
print(“Zusammengeführt entlang Achse 0:\n”, arr_axis0)


Output:

Zusammenführung von Arrays unterschiedlicher Form:
[1 2 1 2 3 4 5 6]

Zusammengeführt entlang Achse 0:
[[1 2]
[3 4]
[5 6]]


4. Common Error with Incompatible Dimensions

If the array dimensions are incompatible, numpy.append() raises a ValueError.

import numpy as np

# Fehler: Unterschiedliche Formen entlang der Achse 0
arr_error = np.append([[1, 2]], [[1, 2, 3]], axis=0)

Error:

ValueError: all the input array dimensions except for the concatenation axis must match exactly

Solution: Ensure that the dimensions match along the specified axis.

Tips for Using numpy.append()

  1. Check Dimensions:
    Use arr.shape to check the dimensions of arrays before appending
    print(arr1.shape) # Gibt die Form des Arrays zurück
  2. Consider Alternatives:
    For appending along specific axes, numpy.concatenate() is often more efficient.
  3. Avoid Large Arrays:
    For very large arrays, predefine the array and assign values directly. This avoids the overhead of creating a new array with each call to numpy.append().

Common Use Cases

  • Data Analysis: Merging datasets.
  • Image Processing: Combining pixel values from multiple images.
  • Machine Learning: Preparing training data.

Conclusion

The numpy.append() function is a versatile way to concatenate arrays in Python. It offers options for flattening arrays and appending along specific axes. To achieve optimal results, ensure that the dimensions of the arrays are compatible and consider using alternatives like numpy.concatenate() for large datasets.

Try the examples above and integrate numpy.append() into your Python projects!

Source: digitalocean.com

Create a Free Account

Register now and get access to our Cloud Services.

Posts you might be interested in:

Moderne Hosting Services mit Cloud Server, Managed Server und skalierbarem Cloud Hosting für professionelle IT-Infrastrukturen

How to Manage User Groups in Linux Step-by-Step

Linux Basics, Tutorial

Linux file permissions with this comprehensive guide. Understand how to utilize chmod and chown commands to assign appropriate access rights, and gain insights into special permission bits like SUID, SGID, and the sticky bit to enhance your system’s security framework.

Moderne Hosting Services mit Cloud Server, Managed Server und skalierbarem Cloud Hosting für professionelle IT-Infrastrukturen

Apache Airflow on Ubuntu 24.04 with Nginx and SSL

Apache, Tutorial

This guide provides step-by-step instructions for installing and configuring the Cohere Toolkit on Ubuntu 24.04. It includes environment preparation, dependency setup, and key commands to run language models and implement Retrieval-Augmented Generation (RAG) workflows. Ideal for developers building AI applications or integrating large language models into their existing projects.